Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7992): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049589

RESUMO

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Ilhotas Pancreáticas , Humanos , Estudos de Casos e Controles , Separação Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Reprodutibilidade dos Testes
2.
J Vis Exp ; (201)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37982512

RESUMO

The pancreatic islets of Langerhans, which are small 3D collections of specialized endocrine and supporting cells interspersed throughout the pancreas, have a central role in the control of glucose homeostasis through the secretion of insulin by beta cells, which lowers blood glucose, and glucagon by alpha cells, which raises blood glucose. Intracellular signaling pathways, including those mediated by cAMP, are key for regulated alpha and beta cell hormone secretion. The 3D islet structure, while essential for coordinated islet function, presents experimental challenges for mechanistic studies of the intracellular signaling pathways in primary human islet cells. To overcome these challenges and limitations, this protocol describes an integrated live-cell imaging and microfluidic platform using primary human pseudoislets generated from donors without diabetes that resemble native islets in their morphology, composition, and function. These pseudoislets are size-controlled through the dispersion and reaggregation process of primary human islet cells. In the dispersed state, islet cell gene expression can be manipulated; for example, biosensors such as the genetically encoded cAMP biosensor, cADDis, can be introduced. Once formed, pseudoislets expressing a genetically encoded biosensor, in combination with confocal microscopy and a microperifusion platform, allow for the synchronous assessment of fluorescent biosensor dynamics and alpha and beta cell hormone secretory profiles to provide more insight into cellular processes and function.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Transporte Biológico , Insulina , Corantes
3.
J Endocr Soc ; 5(12): bvab162, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34870058

RESUMO

Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced ß-cell mass with some islets devoid of ß cells (29.3% of 311 islets) while other islets had many ß cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated ß-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.

4.
JCI Insight ; 5(10)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32352931

RESUMO

Pancreatic islets secrete insulin from ß cells and glucagon from α cells, and dysregulated secretion of these hormones is a central component of diabetes. Thus, an improved understanding of the pathways governing coordinated ß and α cell hormone secretion will provide insight into islet dysfunction in diabetes. However, the 3D multicellular islet architecture, essential for coordinated islet function, presents experimental challenges for mechanistic studies of intracellular signaling pathways in primary islet cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles. We demonstrate the utility of this experimental approach by studying the effects of Gi and Gq GPCR pathways on insulin and glucagon secretion by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion, which occur through changes in intracellular Ca2+. The experimental approach of combining pseudoislets with a microfluidic system allowed the coregistration of intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human ß and α cells.


Assuntos
Técnicas Biossensoriais , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Feminino , Células Secretoras de Glucagon/citologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...